Static calculation of stresses on porcelain SF$_6$/air bushing

Calculation of safety factor

SF$_6$/air bushing type

SF$_6$/air bushing dimensions and weight acc. to attached drawing

Height of SF$_6$/air bushing

Weight of SF$_6$/air bushing

Minimum failing bending moment for insulator

Rated static terminal load on X, Y and Z directions (including tensile force and weight due to connected conductors)

Short circuit terminal load (short circuit current acc. to Specification)

Wind velocity on SF$_6$/air bushing and connected conductors

Height of mounting of SF$_6$/air bushing (will be considered in calculation of seismic load)

Earthquake load characteristics

Horizontal earthquake accelerations

Vertical earthquake accelerations

Frequency

Damping of critical damping

Horizontal acceleration response

Vertical acceleration response

1) **Condition 1** - Routinely expected loads

(Design pressure 100%, Mass 100%, Rated terminal load 100%, Wind pressure 30%)

Bending moment on bottom insulator

- by design pressure X/Y direction

- by rated terminal load (X/Y direction)

- by wind pressure (X/Y direction)

TOTAL

Safety factor for insulator

(Permissible failing bending moment/
TOTAL bending moment on bottom insulator)

Vertical forces on bottom insulator:

- by design pressure (Z direction)

- by rated terminal load (Z direction)

- by weight (Z direction)

TOTAL

2) **Condition 2** - Rarely occurring loads (Alt.1)

(Design pressure 100%, Mass 100%, Rated terminal load 50%,
Wind pressure 100%, Short circuit load 100%)

Bending moment on bottom insulator

Please add the calculation of each required value of bending moment.
3) Condition 3 - Rarely occurring loads (Alt.2)

(Design pressure 100%, Mass 100%, Rated terminal load 70%, Wind pressure 10%, Seismic load 100%)

Bending moment on bottom insulator

- by design pressure X/Y direction
 kNm/kNm
- by rated terminal load (X/Y direction)
 kNm/kNm
- by wind pressure (X/Y direction)
 kNm/kNm
- by seismic load (X/Y direction)
 kNm/kNm
 TOTAL
 kNm/kNm

Safety factor for insulator

(Permissible failing bending moment/
TOTAL bending moment on bottom insulator)

Vertical forces on bottom insulator:

- by design pressure (Z direction)
 N
- by rated terminal load (Z direction)
 N
- by seismic load (Z directions)
 N
- by weight (Z direction)
 N
 TOTAL
 N
4. Total loading and Safety Factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>Total bending moment (Nm)</th>
<th>Required/Offer safety factor</th>
<th>Vertical forces on Z directions (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Condition 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Bottom section of insulator</td>
<td>2.1/……</td>
<td>2.1/……</td>
<td></td>
</tr>
<tr>
<td>2. Condition 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Bottom section of insulator</td>
<td>1.5/……</td>
<td>1.5/……</td>
<td></td>
</tr>
<tr>
<td>3. Condition 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Bottom section of insulator</td>
<td>1.2/……</td>
<td>1.2/……</td>
<td></td>
</tr>
</tbody>
</table>